July 14, 2023

Research Shows Minerals Can Help Mitigate PFAS in Groundwater

Mary Miller Morgan
U.S. ARMY ENGINEER RESEARCH AND DEVELOPMENT CENTER (ERDC)
Brad Baxter, right front, and Anna Lesko, with the U.S. Army Engineer Research and Development Center, analyze amendment samples using Electron-Probe Micro-Analysis at the University of Alaska Fairbanks– Advanced Instrumentation Laboratory. (U.S. Army Corps of Engineers Courtesy photo)
Brad Baxter, right front, and Anna Lesko, with the U.S. Army Engineer Research and Development Center, analyze amendment samples using Electron-Probe Micro-Analysis at the University of Alaska Fairbanks– Advanced Instrumentation Laboratory. (U.S. Army Corps of Engineers Courtesy photo)

Emerging chemicals of environmental concern in water represent a major challenge for the U.S. Army Corps of Engineers, in terms of exposure risks to humans and the environment.

The U.S. Army Engineer Research and Development Center (ERDC) is working to understand detection, fate and transport, and remediation of a group of these chemicals, generally known as per- and polyfluoroalkyl substances (PFAS).

PFAS are found in everyday consumer products — from non-stick cookware to water-resistant clothing. They are also found in certain foams, known as aqueous film forming foam, used to fight fires on military and commercial airfields. PFAS may enter the environment at sites where these chemicals are made, used or disposed of and can make their way into groundwater systems through runoff or soil seepage.

The Strategic Environmental Research and Development Program (SERDP) and the Environmental Security Technology Certification Program (ESTCP), funded by the Department of Defense, have a core mission to address challenges, such as PFAS, and improve environmental performance.

ERDC partnered with SERDP/ESTCP on a project to identify the best technologies to characterize, treat and manage PFAS in groundwater environments, as well as to determine how mineral-based amendments can increase the removal efficiency of natural sediments.

“The project’s goal is to understand how substances like activated carbon and iron can aid in immobilizing PFAS from groundwater and how altering key chemical variables, like concentration and ionic strength, will impact adsorption over time,” said Dr. Amanda Barker, a research chemist with ERDC’s Cold Regions Research and Engineering Laboratory. “Our work also investigates overall amendment integrity and how it might physically change once distributed in groundwater systems.”

Using amendments as a simple and rapid tool to remove PFAS from groundwater is ideal for remote locations or those where it isn’t possible to completely remove impacted soil and groundwater and destroy the PFAS.

“Removal of groundwater and soil is difficult and costly, and we’ve shown amendments may aid in reducing the risk of off-site migration, which at the very least would potentially slow down the risk to humans and the environment,” Barker said.

In a laboratory setting, Barker and her team have been able to show complete removal of select PFAS using activated carbon sourced from peat mixed with iron.

“We are very excited about our recent developments as this information will be able to directly aid other basic research programs interested in understanding how PFAS migrate in the environment,” she said.

Share this article ...

Check out America's Engineers 2022-2023 edition.

2023 Digital Edition Sponsor
America's Engineers: The People, Programs, and Projects of the U.S. Army Corps of Engineers ® is published by American Conference & Event Media, LLC.

Reproduction in whole or in part without written permission is prohibited.

American Conference & Event Media, LLC., and the U.S. Army Corps of Engineers (USACE) do not assume and hereby disclaim any liability to any person or company for any loss or damage caused by errors or omissions in the material herein, regardless of whether such errors result from negligence, accident, or any other cause whatsoever. The views and opinions in the articles or advertisement are to be taken as the official expression of the publisher, staff, or writers, unless so stated. Neither the publisher nor USACE warrant, either expressly or by implication, the factual accuracy of the articles or advertisements herein, nor so they so warrant any view or opinions offered by the authors of said articles.

Permission to use various images and text in the publication and on this website was obtained from USACE or U.S. Department of Defense (DOD) and its agencies, and in no was is used to imply an endorsement by USACE nor any DOD entity for any claims or representations therein. None of the advertising contained herein implies USACE or DOD endorsement of any private entity or enterprise. This is not a U.S. government publication or website.
© 2023 American Conference and Event Media, LLC.
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram